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Abstract We describe an event-based, publish-
and-subscribe system based on using “smart 
subscriptions” to recognize weakly structured 
events. We present a hierarchy of subscription 
languages (propositional, predicate, temporal 
and agent) of increasing expressability and 
computational complexity, and several algo-
rithms (Sig, Memo, Lattice, Compile and RETE) 
for efficiently recognizing event matches. We 
have applied this system to implementing and 
managing distributed applications. 
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aging distributed applications, subscription lan-
guages, event channels, event matching algo-
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1 Introduction 

This work arose in the context of developing a 
framework (the Object Infrastructure Frame-
work, or OIF) to simplify creating distributed 
applications. That project developed technology 
to endow distributed systems with better 
reliability, security, quality of service and 
manageability by extending the standard 
remote–procedure-call mechanisms of distri-
buted object technology (e.g., CORBA, Java RMI) 
to include discrete wrapping injectors on the 
communication paths between components. By 
injecting the behavior for error recovery, 

behavior for error recovery, redundancy, authen-
tication, access control, intrusion recognition, 
priority queue management, and so forth, OIF 
made substantial progress in separating and 
simplifying the first three concerns: reliability, 
security and quality of service [5]. 

However, much of manageability — fault 
diagnosis, intrusion detection, performance 
analysis and accounting [14] — proved resistant 
to a pure injector approach. Injectors provided a 
locus for recognizing manageability events, but 
not a mechanism or architecture for reporting 
them. This suggested extending OIF with an 
event mechanism. While motivated by OIF’s dis-
tributed management needs, we created the gen-
eral distributed event system described in this 
paper. Critical issues in the design of that system 
were: defining what makes an event interesting 
and declaring to whom should an interesting 
event be reported. 

In event systems, event producers asynchro-
nously generate events received by consumers. 
We eschewed having producers directly send 
events to consumers. Such an architecture is brit-
tle. It requires too much knowledge of the struc-
ture of a system in too many places: changes in 
the organization of event producers need to be 
reflected in every event consumer. Direct connec-
tion can also impede producers, particularly if 
they must interrupt critical activities to support 
the event-management of uncritical ones.  



 

A solution to these problems is to position 
an intermediary between producers and consum-
ers, an event channel. Producers funnel events to 
the event channel. Consumers describe to the 
event channel which events interest them. The 
event channel is responsible for forwarding ap-
propriate events to interested consumers. This 
notion of event channel also goes under the ru-
bric “publish and subscribe”: event consumers 
subscribe to (interesting) events published by 
event producers.  

In this paper we consider how to code event 
channels so that exactly the right events are de-
livered to the appropriate consumers. We 
achieve expressiveness without overwhelming 
communication cost by directing only interest-
ing events only to interested parties. Communi-
cation costs far more than processing, so it is 
better to expend effort checking that the com-
munication is desired than to send volumes of 
uninteresting data. Of course, local processing 
isn’t quite free, either. We are thus addressing 
two issues: what subscription languages allow 
consumers to precisely describe interesting 
events; and which algorithms allow event chan-
nels to organize the subscription space so as to 
efficiently recognize events matching subscrip-
tions. 

2 Architecture 

2.1 Event Channels 

The two relevant interfaces for this discussion 
are consumers and event channels. A consumer 
is an object to which one can publish an event 
(encoded as a string). A consumer is entitled to 
do whatever it wants with that event. For exam-
ple, simple consumers might print the event on a 
debugging screen, write the event to a log file, 
or update a database with some salient facet of 
the event. Any object can act as an event pro-
ducer by composing a string that represents an 
event and invoking publish on some consumer 
with that string.  

The interface event channel extends con-
sumer with a subscribe method. Subscribe takes  

• A reference to a consumer 

• A description (a string in some subscription 
language) of the set of events interesting to 
that consumer 

• A description of what about the existing 
event and environment is to be reported to 
the consumer (that is, the structure of an 
event to publish to the consumer)  

• Optional signature information (discussed 
below) that can be used to optimize sub-
scription algorithms 

Subscribe returns a ticket for managing the sub-
scription. With that ticket, the subscriber can 
modify or cancel a subscription. Event channels 
also include a method for obtaining the closure 
of the set of subscriber interests—that is, a sub-
scription that describes the union of all the 
channel’s subscriptions.  

Event channels, being consumers, have a 
publish method. The implementation of publish 
in an event channel considers the new event in 
light of the existing subscriptions (and, perhaps, 
past events) and publishes that event (or some 
derivative of the event) to every consumer 
whose subscription matches the event.  

In OIF, every virtual address space has one 
global (within that address space) well-known 
event channel. Any application or injector that 
has an event to report can publish to that event 
channel. Any consumer that wishes to receive 
events can subscribe to its local event channel. 
Event channels on different virtual machines can 
subscribe to each other. In this way, the publish 
and subscribe mechanism becomes distributed, 
while appropriate local decisions are made about 
whether to distribute an event. 

In OIF, local (in the same virtual machine) 
event channels can use not only the event itself 
but also information from the producer’s envi-
ronment in matching subscriptions and compos-
ing forwarding events. OIF arranges to have the 
salient elements of this environment copied as 
part of the annotations of ordinary calls [5]. For 
example, a process could tag a particular call 
with some special symbol and recognize proc-
esses created as consequences of that call as re-
taining that symbol in their environment. We 
have used this feature to track the flow of con-
trol through a distributed system, generating 
events when a consequent call reaches a remote 
object. 



 

OIF offered two different mechanisms for 
making distributed event channels become 
aware of each other. One was to make the appli-
cation responsible for setting up the event chan-
nel network and arranging appropriate subscrip-
tions among the nodes of that network. We are 
currently exploring the alternative of having 
information about the event channel structure be 
distributed by the framework “underneath” the 
application’s ordinary communications. This has 
an interesting event horizon effect: knowledge 
of channels interested in the effects of an action 
travels as fast as that action and its conse-
quences. 

2.2 Events 

Event systems usually support one of two differ-
ent kind of events. Most event systems define 
strongly-typed record-like event classes, where 
the class structure is globally known. In such a 
model, the manipulator of an event knows ex-
actly which fields it has. Often the subscription 
language consists of merely describing interest 
in all records of a given class or subclass. This 
has the advantage of giving the programmer a 
reliable set of information on which to build—if 
I have an event of type t, I know it has fields x, 
y, and z. It has disadvantage of requiring too 
much commonly shared information, both in 
space and time. We do not want to demand that 
every event channel have knowledge of all kinds 
of events or even to posit the existence of an 
event definition repository. We expect the event 
structure to change, both as temporary event 
types are created to answer the questions of de-
bugging and as new event types are created as 
part of the system evolution. 

OIF takes the opposite tack. In OIF, events 
are property sets (name–value pairs), without 
system restrictions (or promises) as to the exis-
tence of any particular name–value pair in any 
particular event. OIF provides a marshaling 
mechanism for converting event structures to 
strings for transmission, and an unmarshaling 
mechanism for reinflating them back to prop-
erty–value pairs. Thus, the string event represen-
tation: 

“userid: Fred; time: 12:40:18; type: error;  
message: Read unhappy maknam” 

would translate into an event object with four 
properties (userid, time, type and message) with 
the corresponding (string) values. The inter-
preter is responsible for doing data conversion 
for numeric operators. There are specific nota-
tions for strings that represent remote object ref-
erences and values that are themselves events. 

For debugging and system evolution, the 
property approach allows us to introduce new 
event fields into a running system. In terms of 
subscription languages, reference to the fields of 
events is straightforwardly uniform. This has the 
further virtue that no common understanding of 
event structure definitions is required across the 
distributed system. It has the corresponding dis-
advantage that we lack compile-time checks that 
structures will have properties not explicitly 
demanded in subscriptions. 

3 Subscription languages 

A goal of this work was to minimize uninterest-
ing communications. Broadly, this suggests a 
richly expressive subscription language, where a 
subscriber can precisely describe which events 
are of interest. However, the richer the subscrip-
tion language the more effort is involved both at 
coding time in creating the subscription inter-
preter and at run time in deciding if a particular 
subscription is satisfied by a given set of events. 
In OIF, we created a series of subscription lan-
guages of increasing expressiveness.1 In OIF, we 
have four subscription languages: propositional, 
predicate, temporal and agent. 

The propositional language deals solely with 
the existence of properties of events. A sub-
scriber can express interest in A, B, and C, and 
any event that mentioned (as properties at the 

                                                           

1 In this we are reminded of the hierarchies of auto-
mata, formal language grammars, and logics, where 
successively elements extend the expressibility of 
simpler mechanisms, often at the cost of greater 
computational complexity. In practice, in both formal 
language theory and OIF, these structures are not 
always strictly hierarchical. 



 

top-level) A, B and/or C would match that sub-
scription.  

The predicate language provides a way to refer 
to the values fields of events (and subfields of 
contained events), constants, and values from 
the environment; and to combine these values 
with relations (e.g., “less than”) and proposi-
tional connectives (e.g., “or,” and “not”) to form 
a logical well-formed formula. Using a Cam-
bridge-prefix syntax, a subscription matching 
error or warning events for user Joe would be: 

(and (or (= type ’error) (1) 
  (= type ’warning)) 
 (= user ’Joe)) 

The temporal language loosens the prior re-
striction to single events. The propositional and 
predicate languages reference a single event at a 
time and, forward that event to the consumer. 
The temporal language allows for expression of 
relations among several events. Thus, one can 
talk about the existence of events E1, E2, and 
E3, such that E1 has occurred before E2, which 
occurred before E3, and which share a common 
user. We use RETE [7], an algorithm for rule-
based forward-chaining, as our temporal match-
ing engine. In the temporal language, subscrip-
tion (1) is 

(event (time ?t1) (userid ?u1)) 
(event (time ?t2) (userid ?u2)) 
(event (time ?t3) (userid ?u3)) 
(test (< ?t1 ?t2 ?t3)) 
(test (eq ?u1 ?u2 ?u3)) 

To deal with the finiteness of memory, we guar-
antee only that the most recent n events will be 
available for matching and that new subscrip-
tions might recognize old events. 

The agent language carries the implication of 
the Cambridge-prefix form to its logical exten-
sion. Subscriptions are themselves programs, 
invoked by event occurrences and able to exam-
ine the local event repository. Thus, this is a 
mechanism for distributing agents throughout a 
system and cleaning connecting a distributed 
agent to a local environment. Since we have not 
yet implemented an agent language, we have 
little to say about them except to note their exis-
tence at the top of the language hierarchy and 

their straightforward implementation with any of 
the standard Lisp-like interpreters.2 

In operational terms, the subscription of a 
subscribe method expects a string. The event 
channel parses this string with respect to the par-
ticular language. In our implementations, we 
used Cambridge prefix form as the grammatical 
substrate of the various subscription languages, 
as it is the simplest-to-parse recursive language.  

4 Event channel algorithms 

We developed several algorithms to improve the 
efficiency of recognizing matching subscrip-
tions: Sig, Memo, Lattice, Compile and RETE. 
(We have implemented all but the fourth.)  

Sig, Memo and Lattice rely on recognizing 
the signature of subscriptions. The signature of 
a subscription, 6(s), is set of event properties 
demanded by the subscription s. For example�6� 
“(and (or (= type ‘error) (= type ‘warning)) (= 
user ‘Joe))”) is {type, user}. That is, any event 
matching this subscription must have (at least) 
pairs whose names are “type” and “user.” We 
call the properties mentioned in an event, e, the 
fields of that event, )(e). Both 6�and )�can be�
represented with bit-vectors for fast subset com-
parisons. These algorithms are 

Sig. Given event e, for each subscription, s, 
Sig checks that 6(s) ⊂�)(e)�before evaluat-
ing s. Sig is a quick way of excluding cer-
tainly uninteresting events. Sig is appropri-
ate for applications that generate a variety 
of different events and use computationally 
complex subscriptions. 

Memo. For each unique set ), Memo keeps 
a cache of those subscriptions for which 
6(s) ⊂�). When another event with fields ) 
arrives, Memo needs to examine only the 
subscriptions in the cache. On subscription 

                                                           

2 A similar strategy can be used for sending Java vir-
tual machine instructions as subscriptions. The Cam-
bridge-prefix form avoids the need for a resident 
compiler and makes it simpler for programs to dy-
namically create subscriptions at the cost of requiring 
a (simple) interpreter in the event-channel. 



 

updates, Memo can either examine the 
power set of the signature of the changed 
subscription, updating the corresponding 
memo values, or (in practice) clear the 
memo table. Memo is useful for the com-
mon situation where the subscription set 
changes slowly and events with the same 
fields occur repeatedly. 

Lattice extends Memo with a notion of 
subsumption. That is, if 6(x) ⊂� 6(y) and 
6(x) ⊄�)(e), then 6(y) ⊄�)(e), and y could 
not match e. In general, the signatures of 
subscriptions form a lattice with respect to 
subset. Lattice constructs the (sparse) lat-
tice as a data structure. It works by flatten-
ing the lattice to a single path. Lattice han-
dles subscription change more easily than 
Memo, and is most appropriate when there 
is a lot of subsumption in the subscription 
structure. 

Compile. Each subscription can be viewed 
programmatically: when the subscription 
condition is met, perform the forwarding 
action. Compile treats the entire subscrip-
tion set as a program by sequencing the 
subscriptions, and performing arbitrary 
compiler optimizations on the resulting 
program. In particular, elements such as 
common sub-expressions can be moved 
forward so as to be computed only once, 
tests such as (> x 3) can be placed so as to 
shadow (> x 7), and subsumptions can be 
realized by moving subsumed rules into the 
then-parts of more general subscriptions. 
Compile is most appropriate for a relatively 
static subscription set that contains a large 
number of common sub-expressions. 

RETE. The first four algorithms deal with 
matching a single event to a single sub-
scription. The temporal language matches 
multiple events to a subscription. In our 
implementation, we used the JESS [6] im-
plementation of RETE for pattern matching.  

Which is best? The optimal subscription channel 
algorithm is a function of the expected distribu-
tion of events and subscriptions. As we have 
indicated, some algorithms take advantage of an 
expected variety in the published events, while 
others do better on related or repeated event 

types. Similarly, the amount of effort expended 
when a new subscription is received can be 
worthwhile only given a particular frequency of 
subscription changes. 

5 Applications 

We have implemented the event channel mecha-
nism described here in the OIF distributed com-
puting framework, and applied it in a demon-
stration application [8].  That application im-
plemented a simulation of a distributed, com-
petitive network management application. It 
used injectors to achieve quality of service (i.e., 
real-time performance), manageability and secu-
rity. It used the event mechanism to dynamically 
drive “inspector” user interfaces. The event 
mechanism also proved critical in debugging the 
application, particularly as injectors could gen-
erate events on every remote invocation. Events 
could then be selectively scanned to get a trace 
of interprocess calls, and this trace could be 
transparently directed to both visible graphic 
user interfaces and textual logs. 

In general, in OIF one can arbitrarily and dy-
namically modify the injectors of proxies or set 
the default behavior of a set of proxies to in-
clude a particular injector. By making an injec-
tor that generates trace events and applying that 
injector appropriately, the event mechanism can 
be made to track the patterns of interprocess 
calls in the system. 

6 Related work 

6.1 Event models.  

In the taxonomy of the Barrett, Clarke, Tarr and 
Wise’s Framework for Event-Based Software 
[2], OIF’s event mechanism uses point-to-point, 
application-to-application communication. Mod-
ules have no explicit specification of their 
interfaces. OIF supports dynamic system modifi-
cation and allows fully abstract naming. Our 
publishers are Barrett’s informers; our consum-
ers, listeners; and our event channels, routers. 
The subscription mechanism effectively serves 
to do message transformation. We posit no de-



 

livery constraints beyond the underlying distrib-
uted object framework. The local event channel 
on each virtual machine serves as a group. 
Rosenblum and Wolf [11] describe a seven-
component framework for event observation and 
notification. Within that framework, our pub-
lishers are the invoker objects and subscribers 
are the objects of interest. Events are explicitly 
generated by invoking the send event action, 
naming is implicit in the naming of event fields 
(the property-based model), observation is by 
explicit subscription, information is by the ac-
tion of a subscription, pattern abstraction and 
filtering is by the pattern part of the subscription 
language, and the partitioning arises naturally 
from the set of subscriptions made. We have no 
explicit time model, notification is by distributed 
object technology calls, and the resources for 
sorting through subscriptions are provided by 
the sender and the intermediary event channels.  

6.2 Event implementations. 

Bates [3] argues for using a rule-based publish 
and subscribe system to debug heterogeneous, 
distributed systems. Primitive events are defined 
and source code is annotated so that the execut-
ing program generates event instances. Bates 
also uses a rule-based engine for complex event 
detection, fairly similar to RETE, though inde-
pendently discovered. 

The Elvin project is a publish-subscribe ser-
vice that delivers notifications on the basis on 
the event’s content [12]. It has an event sub-
scription language that allows subscribers to 
place some constraints over the notifications, 
flexible definition of events that allow develop-
ers to define events as required, dynamic defini-
tion of event types, and allows the creation of 
new events based on old events. Elvin also in-
troduces the idea of quenching that “allows 
event producers to receive information about 
what consumers are expecting of them so that 
they need only generate events that are in de-
mand.” In contrast to Elvin, which has a single 
centralized event channel, OIF’s event channels 
are distributed.  

The Ariadne Debugger in TAU stores an exe-
cution history graph of events and allows the 
subscriber to specify patterns using a simple 

subscription language that is capable expressing 
temporal relations among several events but un-
able to express other simple prepositional or 
complex relations among events [13]. To com-
pensate for the language’s limitations, Ariadne 
“provides a scalable, spread-sheet like interface 
for exploring match trees.” 

CEDMOS is composed of event-producers 
and event-consumers that are connected through 
event-transformers. “The event transformers 
convert streams of incoming events into differ-
ent streams of events, which are … of interest to 
the event-consumers” [1]. To ease the definition 
the event transformers, a graphical tool facili-
tates the definition of complex events from sim-
ple events. 

Brant and Kristensen apply events to web-
based notification. Their architecture includes 
the notions of annotated lists, a well-worked-out 
datatype mechanism and a good implementation 
of filtering [4]. Intermetrics [10] describes a de-
sign for applying events to doing debugging of 
distributed, components. Luckham and Frasca 
apply event patterns, causal histories, filtering 
and aggregation to provide higher levels of ab-
stractions for managing distributed systems [9].  

7 Discussion 

We have discussed the publish and subscribe 
mechanism in the Object Infrastructure Frame-
work. This mechanism has proved to be a pow-
erful tool in debugging and managing distrib-
uted systems, supporting functions such as fault 
diagnosis, intrusion detection, performance 
analysis, and accounting. Key elements of this 
work are the ability to inject event generators 
into existing components, existence within a 
framework that provides a continuing environ-
mental context, the use of unstructured events, 
rich subscription languages, and selectable and 
efficient algorithms for subscription resolution. 
Topics for further work include (1) subscription-
forwarding mechanisms that do not require tree-
like branching, (2) security mechanisms for sub-
scriptions and event channeling (including the 
ability of an event generator to limit who could 
notice his events), (3) quantifying the actual per-
formance of different event-channel algorithms 
in realistic cases, (4) implementing agent sub-



 

scription languages, and (5) implementing sub-
scription compilation. 
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